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Analytical proof of the random-phase approximation for a 
model of modulated diffusion 
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Istituto di Fisica dell'llniversith Bologna, Italy 

Received 18 M m h  1994 

Abstract. The random-phase approximation is rigorously proved for a pmicular model of 
modulated diffusion consisting in a I D  integrable Hamiltonian map whose phase is modulated 
by an external Markov noise. Continuity of the diffusion coefficient in rhe limit of vanishing 
noise amplitude is also investigated. 

1. Introduction 

The transport in chaotic regions of Hamiltonian models is a relevant phenomenon in 
the description of many physical systems [I-71, such as a magnetically confined hot 
plasma, a particle beam in a magnetic lattice or ring, or a spinning planet or galaxy. 
Modulated diffusion, in particular, arising from integrable Hamiltonian models whose natural 
frequencies are modulated by an external time-dependent deterministic or purely random 
noise, is supposed to be one of the most important contributions to transport in devices 
for the magnetic confinement of plasmas or particles, and crucial to determine the typical 
lifetime of these systems [SI. In spite of its practical importance, a mathematical theory of 
transport is far from being available due to the very complex appearance of phase space, 
which is crossed, in  the typical situation of an integrable Hamiltonian model subjected to 
a small perturbation, by regular structures such as Kolmogorov-Amol'd-Moser (KAM) ton, 
chains of islands and Mather's sets alternating with chaotic domains at infinitely small scales. 
Invariant manifolds and Mather's sets represent full or partial barriers to transport and may 
prevent large-scale diffusion or lead to anomalous diffusion rates, In appropriate situations 
and for systems of dimension larger than two, slow Amol'd diffusion can occur, even though 
no rigorous results are yet available for a generic map [S-lo]. The problem simplifies 
somehow in the limit of large perturbation amplitudes, as the regular regions typically 
come to a very small fraction of the phase-space measure and diffusion can freely develop 
in an almost ubiquitous chaotic sea. The fast decay of correlations, which is reasonable 
to expect on the angle variables, allows us to introduce the random-phase approximation 
(WA) in studying diffusion on the actions, together with the quasilinear estimate for the 
corresponding diffusion coefficients 121, Although physically plausible, the RPA has not yet 
been justified on an analytical basis even for quite simple 2D symplectic mappings. except 
for the hyperbolic, continuous algebraic automorphisms of the 2-torus [7]. 

In more complex models, like a class of almost hyperbolic piecewise linear mappings 
of the 2-torus lifted to the cylinder [ll-141 whose behaviour is very close to billiards [15- 
181, the existence of a positive, finite diffusion coefficient and stronger statistical properties 
(central limit theorem, Donsker's invariance principle [19,20] have been established, but 
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a clear relationship between the diffusion cdefficient and the parameters of the map is 
still missing [12]. A simpler model has recently been proposed in [21,22] which gives a 
description of the local diffusion properties of a symplectic map when an external modulation 
is present. The model is obtained by perturbing an integrable isochronous Hamiltonian map 
by an external noise. The isochronous hypothesis and the introduction of the external noise, 
to simulate the effect that in more complicated systems would derive from coupling with 
hyperbolic degrees of freedom, are the crucial properties which allow one to obtain analytical 
proofs of existence and positivity for the diffusion coefficient [21-241. Nevertheless, as 
numerical investigations suggest, the model is able to reproduce many of the qualitative 
features noticed in more realistic systems [25],  for which analytical results are not available: 
the RPA in the limit of very large values of the noise amplitude (or perturbation parameter) 
E .  the oscillating behaviour of the diffusion coefficient D as a function of the same E .  

the occurrence of E domains where D exceeds the corresponding quasilinear estimate D,, 
(the so-called superlinear regime), and, finally. stronger statistical properties than the mere 
existence of D (central limit theorem and invariance principle). In this work the analytical 
proof of the RPA for the above model is discussed, i.e. the convergence of the diffusion 
coefficient to its quasilinear estimate in the limit E -+ 00. One of the most interesting 
aspects of the problem is given by the non-trivial dependence of the diffusion coefficient 
on the amplitude E and also by the fact that the latter is a continuous parameter, a quite 
different situation with respect to the continuous sawtooth map, where the perturbation 
parameter can only take integer values and the quasilinear estimate holds for all E (71. An 
analytical investigation of the diffusion coefficient trend in the neighborhood of E = 0 is 
also presented. 

2. A review of the model 

We consider a Hamiltonian integrable isochronous map with one degree of freedom in 
canonical variables and introduce a perturbation on its natural frequency by means of 
an external deterministic or random noise. A possible choice is given by the Markov 
modulation x' = 2x mod[O, I[ - !j, which leads us to consider the map 

CY' =   CY mod [O, 1[ - 

(2.1) 
I 
I., = ' 1 J + v(e) 

where 8 E [0,27f[ and j E P are the canonical action-angle variables. CY E [i, +[. endowed 
with the normalized Haar measure p~ on the 1-torus T' = [-f, f [ ,  w E R is a constant 
unperturbed frequency and E E R a perturbation parameter. Finally, V(8)  is an arbitrary 
periodic analytic function of the angle variable 8, with zero mean. Under the technical 
requirement that wf2n  is a Diophantine number, it is then possible 1231 to prove the 
existence and finiteness of the diffusion coefficient D defined as 

in which we denote by E the average with respect to the product measure dp(0, CY) = 
d8 x dpH on the space @ , C Y )  E IO, 2ir[xT' ,  and Jn is the value taken at time n E N by 
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Figure 1. The expression M(E; k ,  0) + as a function of the noise amplitude E > 0, for 
k = 1 and of2n = (A - 1)/2 the golden number. For E >> 0. the term is v q  close to +;. 
in accordance with the quasilinear estimate. 

the invariant associated to the unperturbed mapping 1231. The diffusion coefficient can be 
written in the form 

where vk, k E Z, Vo = 0, are the Fourier coefficients of the periodic function V(0) in the 
unperturbed map, and the function M(k, E, w )  is defined by 

k s  
sin- 1 - - 

M(k,&,w) = x c o s k w d  m 2 ( " ) f i c o s " ( l - $ ) .  2 (2.4) 
k" (1 - $) j = l  d=l 
2 

The expression D,1 := 4 E,'="-, lVklz represents the quasilinear estimate of the diffusion 
coefficient 1231. It is possible to show that the above statement reflects good ergodic 
properties of the reduced skew map 126,271 obtained from (2.1) by considering the only 
variables # and 01, whose evolution is independent on the action j [28]. The choice of 
defining the diffusion coefficient on the invariant of the unperturbed map 

instead of the action j may seem quite cumbersome, but it  is suggested by the opportuneness 
of a sharp distinction between true diffusive behaviour due, to frequency modulation and 
merely ballistic motion concerning integrable dynamics. It is not surprising at all, however, 
that an analogous result holds for large E when the diffusion coefficient is directly computed 
with respect to the action variable. 

Notice that from equations (2.3) and (2.4) the existence of a quasilinear limit is far from 
being trivial; neither is the convergence to zero for E + 0, as the rough substitution E = 0 
in (2.3) leads to a meaningless formula. Nevertheless a numerical plot shows both features 
(figures 1 and 2), and the next sections are devoted to their proof. 
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Figure 2. The same as in figure I ,  but for smaller valuer of E > 0. Truncation emon in the 
compuhtion of M(E;  k . o )  are analytically estimated to be less than in agreement with 
the superpoacd parabolic fit. The result confirms the quadratic dependence on E suggested by 
figure I, 

3. Proof of the random-phase approximation 

Our goal is to prove that Vk E Z \ (0) and V u  E R \ Q we have Iims+= M ( k ,  E .  w )  = 0. 
Throughout the paper we will assume for simplicity's sake, but with no loss of generality 
as M ( k ,  E ,  w )  is an even function of E ,  that E > 0. 

First of all we write the expression M [ k ,  E .  w )  as a sum of three terms, for which the 
computation of the limit E + +CO is relatively simple. VE 0 and V k ,  d E N we introduce 
the identity 

k s  
sin - +--+- k& 

2 

s i n S ( l - $ )  s in$( l -$) -s in-  k s  sin- k s  - 1 

(3.1) 2 2 2d 2 - 
- 1 

- 2 
k s  - l - g  "(1-$) 2 2 2 

and consider the series &(k ,  E ,  U )  = E,",, C i ( k ,  E ,  w :  d ) ,  i = 1,2,3, on having defined 
the coefficients 

CI ( k ,  E ,  0; d )  := COS kwd  
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L e m m  1. For every k E Z \ (0) and Vwo/2n E R \ Q there holds 

lim E ~ ( ~ , E , u J )  = 0 and lim &(k. E ,  w )  = 0. 
c-+m e++m 

Proof. We simply have to remark that: 
(a) Vd, k E P4 there exists lime,+, Cl(k,  E ,  0; d )  = 0, as ICl(k, E,  w; d)l < 8/~; 
(b) the following upper bound holds: 
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(3.3) 

(3.4) 

and is uniform in E E R+ and integrable in d E Pi, Czl l /Zd-'  = 2. 
By applying Lebesgue's dominated convergence theorem we deduce therefore that 
lim,,,, El(k, E, w )  = 0. The secopd part of the lemma follows in an analogous way. 

0 

We now want io find out an upper bound 'for IES(k, E,  w ) /  which is infinitesimal as 
E --f +ca. To this end we prefix the two following remarks. 

Renrark I .  By posing, Vx E R, dist(x, nZ) := lnf ( x  - p n (  and taking j E N such that 
D E E  

there holds k ~ / 2 j + '  < dist ($, zZ) and finally sgncos 

Remark 2.  For every x E a+ we have 

= sgncos $. 

(3.5) 

(3.6) 

As 1 logB/BI is a monotonic decreasing function in the interval ,8 E [e+ fool, we deduce 
that VE 2 z e  there holds 

(3.7) 

because %/dist ($, RE) > e V k  E N. 
We can now state the following: 
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Lemma 2. 
frequency o/2n, so that 

Let y, > 0 and fi, 2 2 be the characteristic parameters of the Diophantine 

Then, V&/2z E R+ \ Q, e/2n z e /2 ,  and Vk E N, the following upper bound holds: 

proof. We preliminarily write the inequality 

By using remark 1, the residual series admits the further bound 

From Abel’s inequality we get, Vn E W, n > j ( k s )  + 2: 

< SUP 1 2 coskwd[sgncos~]d~  < 2’w-’ywkXw-l 
X€r(kF)+I.-.n-l] d=S(kr)+l 

independent on n. and inserting in (3.10) we deduce the lemma. 

We can state a similar result concerning the case &/237 E Q+. 

lamma 3. With the same notations used in lemma 2, V&/% E Qt there holds 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

0 

(3.13) 

Proof. Let E = 2zp/q, with p .  q E N and relatively prime. Expression E3(k, E ,  o) then 
becomes 

(3.14) 

If pk/q # h + 4, h E W U IO), we can repeat the proof of the previous lemma 2, as 
cos(npk/q) # 0. On the contrary, let pk/q = h + 4, for some h E N U (0). As a 
consequence sin(xpk/q) = ( - l ) h ,  whereas 

(3.15) 
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Therefore 

(3.16) 

By taking j E N such that j z j ( h )  := log(1 + 2h)/log2 we have sin [n. (h + 1) $1 > 0 
and we can bound the previous expression by 

2 - lOg(l+ 2h) 
log 2 + 

x(l + 2h) 

(3.17) 

Abel's inequality allows us to write, Vn E N, n > j ( h )  + 1, the upper bound 

(3.18) 

because of the inequality 

As a conclusion, keeping in mind that &k/n = I + 2h 1, equation (3.17) becomes 

(3.19) 

Moreover, Vk E W it is &k/z  2 &In. and if we take E > xe we get 

and whence 

2 log(sk/x) 1 log(s/rr) 
<-  

nlog2 &k/n log2 &In. 
which completes the proof. 0 

By collecting the results of lemmas 2 and 3 we conclude that the bound (3.13) can 
be applied both in the case of &/2x E P+ \ Q and in the case of &/2rr E Q+, 
Vk E N and V& z err. It follows that lim6-,+,E3(k,&,w) = 0. This motivates the 
asymptotic behaviour of the plot in figure 1, which for every k E W tends to the limit 
lim,,,, El(k,  E ,  w )  + Ez(k, E ,  w )  + E3(k, E,  w )  + 4 = f .  Now we have all the elements to 
prove the RPA in the general case. The correction to the quasilinear estimate of the diffusion 
coefficient can be written in the form 

Let us then state the following: 
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Theorem I (Random-phase approximation). For every w / 2 n  Diophantine and V V ( 8 ) ,  271- 
periodic analytic function of the angle 8, with Fourier coefficients Vk,  k E Z and zero mean, 
there holds 

so that the limit E -+ 00 of the diffusion coefficient coincides with the quasilinear estimate 
Dql. 

Proof. By the symmetry on k we can write that 

(3.22) 

Moreover, as we have already shown, lim,,+, I vk lzCl ( k ,  E,  w;  d )  = 0, V k ,  d E W, whereas 

which is uniform in E and integrable with respect to ( k , d )  E W x N, because of the 
exponential decay of the Fourier coefficients G. By the dominated convergence theorem 
one can deduce that (3.22) converges to zero as E -+ +CO. In an analogous way we can 
prove that hnc++w Eke IVk1*Ei(k. E ,  w )  = 0, as inequality (3.23) holds as well. Finally, 
let us consider 

which can be bounded V& > ne, according to (3.13), by 

(3.25) 

and where, again, the series are convergent because of the exponential decay of the Fourier 
coefficients. Therefore lim,,+,&,IVk12E3(k, E ,  m )  = 0 and the proof is complete. 0 

4. Continuity at E = 0 of the diffusion coefficient 

For simplicity's sake we confine ourselves to the case in which V ( 8 )  is a trigonometric 
polynomial, so that the Fourier spectrum vk is finite. What we have to show is therefore 
that lim,+o M ( k ,  E ,  o) = - 4 Vk E Z \ {O} and Vm E R \ Q. Due to the symmetry of the 
function M(k,  E ,  w )  with respect to E ,  we may compute the only limit from the right. 
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LRma 4. Vk E Z \ [O) and Vw/2n  E E \ Q there holds lim,,o M ( k , & , w )  = 
lim,,~ N(k, E, w )  provided that the limit on the RHS exists, o n  having defined the evpressidn 

N(k, E, w )  := 
s inkw(d+f)  l ] f i  2 j=I cos- ( I - -  ;,)[ 1-cos-  71 . (4.1) 

Proof. First of all we remove the correction 1/2d in the argument of the function s i n x j x .  
A straightforward application of the dominated convergence theorem shows that the series 

tends to zero as E --f O+. Therefore, we simply have to discuss the residual limit 

kE  
sin- m 

- d=I 

lim - 2 x c o s k w d  
j =  I e + O t  k s  

2 
c3 

= lim x c o s k w d  
d=l  

(4.3) 

To this end, let us rewrite the series 

m 

M(k. E, w )  := cos kwd 
d=l j=l 

in a more suitable form for the computation of the limit E --f 0+, by integrating by parts 
(Brunacci-Abel' identity). Let us preliminarily pose 

1 - eikwd 

1 - eiko 
] V d e N  

i f d = O  

(4.4) [ 
d 

cos kws = We Gko 
Fd(kW) := [ ; 

so that coskwd = F d ( k o )  - Fd-l(kw) Vd E N. Thus 

(4.5) 
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If 0 < k&/2 < n/2, there holds limNdt,ny=, cos $ (1 - 5 )  = 0 and, as jFN(kw)[ < 
2/11 - eikwl, we conclude 

m d 
k(k ,&,w)  = ~ F d ( k w ) n c o s ~  (1 - $) [I -cos$ (1 - &)I. (4.6) 

d=l j=l 

The term 1/2d+l in the previous expression can be dropped, by introducing an error of 
order o(E), as E -+ O+. Indeed, we now have 

Ig Fd(kw) If cos g 2 (1 - $) [cos 5 2 -cos g 2 (1 - -&)]I 
j = I  

- sin - (4.7) 

where we used I sin x/xl < 1 Vx E R. The final expression is evidently ob ) ,  as E --f O+. 
By introducing the Dirichlet kernel 

sin kw(d + f )  
! + e c o s j k w =  2 s i n 9  VkoEW\(O),dEW (4.8) 
2 j = l  

we can come to deal with the lim,,o+ of the series 

U 

Lemma 5. In the same hypotheses of lemma 4 we have the identity 

1 sinkw (d + f )  
lim N(k, E, w )  = -- + lim 

E+Ot 2 c- tOtd=,  2 s i n 9  j = ,  
n c o s  $ (1 - $) [ 1 -cos $1. 

(4.10) 

provided that the limit on the right-hand side exists. 

Proof. We have to show that 

(4.11) 

Consider ks/2 < n/2 and take a fixed n E N. We then have, V j  > n, j E M and Vd 2 n 

j=n 
(4.12) 
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Further. by posing 
"-1 6 m *  

d=l j = l  d=l j=1 

the series on the right-hand side admits the bounds 
n-1 m 

d=n j=1 

n-I m 

2 j = l  d=n 

As a consequence, V k s / 2  < n/2  the expression 

S(k&) := [ 1 - cos $1 F f i c o s  !! 2 (1  - A) 
d=l ,=I 

can be controlled from above by 

ficos; (1 - ;) [ l  - cos ks -1 
2 j = l  J = I  

cos k" 2 (1 - ;) 
k s  n- I 

and from below by 

k& "-I ks n-I d 
[l  -cos -1 + nos  2 (1  - $) cos - 

j = I  j = I  2 j = 1  2 2 

for any fixed n E W. The lim,,o+ of (4.16a) can immediately be written as 
ks 

2 sin2 - 
4 1 - - 

2 lim 
E+W 2 s i n z 2  4 (1 - $) 

(1 - $1 

(4.14) 

(4.15) 

(4 .16~)  

(4.16b) 

(4.17) 

and that of (4.16b) as 

k s  "-1 

E+O+ j= l  
lim n c o s ;  (1  - $ ) c o s y  = 1. 

As a conclusion, Vn E W there holds 

1 < lim inf S(k&)  < lim sup S(k&) < 
E+O+ r+O+ 

and from the arbitrariness of n E W we conclude that lim,+o+ S ( k s )  = 1 ,  which completes 
the proof of the lemma. 
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Lemma 6. In the same hypotheses of lemma 4 we have that 

s i n k w ( d + i ) f i  cos- ;( I - -  ;,)[ I - c o s -  k t ]  = o  
2sin 9 j = ,  

lim 2 
e+o+ &, (4.18) 

kE iI kE 1 
2 2  2 zi Proof 

V j  E N. Therefore 
We have already proved that for 0 < - < - there holds 1 > cos - (1 - -) > 0 

(4.19) 

,is a positive, decreasing sequence. Thus, from Abel's inequality we deduce, Vn E N, 

Hence 

(4.20) 

(4.21) 

and as a consequence 

s i n k o ( d +  4) 1 
2 sin' 9 

which tends to zero as E + O+. 

A straightforward application of lemmas 4 4  now enables us to state the final theorem: 

Theorem 2. 
the following continuity condition at E = 0 

For any trigonometric polynomial V ( 0 )  the diffusion coefficient D(&) satisfies 

lim D(s )  = 0. (4.23) 
E'O 

Theorem 2 is equivalent to stating that for vanishing modulation amplitude E the diffusion 
coefficient tends to zero, which is to be expected by physical considerations-vanishing 
modulation means constant J and therefore vanishing diffusion coefficient. Numerical 
simulations also suggest that the dependence on E is quadratic in the neighbourhood of 0 
(see figure 2). 
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